IFN-γ–STAT1–iNOS Induces Myeloid Progenitors to Acquire Immunosuppressive Activity
نویسندگان
چکیده
Autoimmune diseases often induce dysregulated hematopoiesis with altered number and function of hematopoietic stem and progenitor cells (HSPCs). However, there are limited studies on the direct regulation of HSPCs on T cells, which are often detrimental to autoimmunity. Here, we found that in a murine model of Concanavalin A-induced autoimmune hepatitis, LSK (Lineage-Sca-1+c-Kit+)-like cells accumulated in liver, spleen, and bone marrow (BM), which were myeloid progenitors (Lineage-Sca-1-c-Kit+) that upregulated Sca-1 expression upon T cell-derived IFN-γ stimulation. Strikingly, BM LSK-like cells from mice induced by Con A to develop autoimmune hepatitis or alternatively myeloid progenitors from wild-type mice possessed strong in vitro suppressive ability. Their suppressive function depended on T cell-derived IFN-γ in a paracrine fashion, which induced STAT1 phosphorylation, inducible nitric oxide synthase expression, and nitric oxide production. Blocking IFN-γ/IFN-γ receptor interaction, knockout of STAT1, or iNOS inhibition abrogated their suppressive function. In addition, the suppressive function was independent of differentiation; mitomycin C-treated myeloid progenitors maintained T cell suppressive ability in vitro. Our data demonstrate a mechanism of inflammation induced suppressive function of myeloid progenitors, which may participate directly in suppressing T cell-mediated immunopathology.
منابع مشابه
Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.
Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse ma...
متن کاملSmad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways.
Although transforming growth factor (TGF)-β1 is a well-known immunosuppressive cytokine, little is known about the role of its downstream transcription factors, Smad2 and Smad3, in the suppression of macrophage activation. Previous studies have demonstrated that Smad3 is critical for the suppression of LPS-mediated inducible nitric oxide (NO) synthase (iNOS) induction, although the role of Smad...
متن کاملToll-like receptor 2 ligand and interferon-γ suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells
CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) suppress activation/proliferation of cytotoxic T cells, thereby hindering cancer immunotherapy. MDSCs are increased after adjuvant therapy with toll-like receptor (TLR) 2 ligands, such as Pam2CSK4, in tumor-bearing mice. However, it remains unknown if the activation of TLR2 in MDSCs affects their function and the therapeutic efficacy of TLR2 l...
متن کاملObligatory role of heat shock protein 90 in iNOS induction.
Inducible nitric oxide (NO) synthase (iNOS) plays an important role in cell injury and host defense. While undetectable in normal tissues, iNOS expression is induced by endotoxins and inflammatory cytokines primarily via the IκB kinase/nuclear factor-κB (IKK-NF-κB) and Janus kinase (JAK)-signal transducers and activators of transcription 1 (STAT1) pathways. Our previous studies found that heat ...
متن کاملMyeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice.
Our group and others have determined that immune effector cells from patients with advanced cancers exhibit reduced activation of IFN signaling pathways. We hypothesized that increases in immune regulatory cells termed myeloid-derived suppressor cells (MDSC) could interfere with the host immune response to tumors by inhibiting immune cell responsiveness to IFNs. The C26 murine adenocarcinoma mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017